

Impact assessment of abiotic resources: the role of borrowing and dissipative resource use

Rolf Frischknecht

treeze Ltd., Uster

LCA Forum 55, April 11, 2014, ETH Zürich

Problem setting

- Material resources cannot be lost (on earth), except for
 - Conversion to energy Nuclear fission
 E = m * c²

• One way missions to the universe

Problem setting (cont.)

- Material resources may be dispersed
- Second law of Thermodynamics: Entropy (measure of disorder) tends to a maximum in closed systems

www.kunstaufräumen.ch

Research question

• Premise:

- Resources are a safeguard subject on their own
- Resources have an intrinsic value
- What is the appropriate resource flow to be assessed in the impact assessment?

Terminology and scope: Resource impact factor

- Impact factor of the resource itself
- Does NOT include impacts caused by
 - electricity demand
 - fuel supply and combustion
 - process emissions

during resource extraction Aluminium, in Bauxite

What others do: the «water» case

- Water resources are
 - withdrawn/extracted (from ground and surface water)
 - purified
 - used
 - released back to water bodies, or
 - lost (evaporated, embedded in product or released to other water body)
- Water footprinting community distinguishes between
 - assessing water withdrawn
 - assessing water consumed = water lost

The «mineral primary resources» case

- Mineral primary resources are
 - extracted
 - purified/refined/concentrated
 - used
 - recycled, dispersed or disposed off (landfilled)
- Two approaches in assessing mineral primary resource consumption
 - assess amount of resources extracted
 - assess amount of resources used dissipatively

Resource use: two cases Post consumer resource availability

Example Aluminium

• Case A: Single use (Consumptive use)

• Case B: Recycling (Borrowing use)

Resource use: two cases Quantified example

Assessing the **resources extracted**

	Case A: Single use	Case B: Recycling
Amount of resource extracted	1 kg	1 kg
Resource impact factor	300 UBP/kg	300 UBP/kg
Resource related impact	300 UBP	300 UBP

Assessing the **resources consumed** (dissipatively used resources)

	Case A: Single use	Case B: Recycling
Amount of resource extracted	1 kg	1 kg
Amount of resource lost	1 kg	65 g
Resource impact factor	300 UBP/kg	300 UBP/kg
Resource related impact	300 UBP	19.5 UBP

Overview of results

	Case A: Single use	Case B: Recycling
Resources extracted	300 UBP	300 UBP
Resources consumed	300 UBP	19.5 UBP

Ecological scarcity '13

Recommended application of resource eco-factors

- Based on the political target the eco-factors should not address the extraction of a resource but the **dissipative use** only
- Dissipative use = materials are degraded, dispersed and lost in the course of usage and no longer (economically) available for future usage
- Remaining portion is only «on loan»
- → Eco-factors are applied to the difference between resource extraction and recycled resources

Open question

- When consider a resource being lost, being used dissipatively?
 Examples:
 - copper used as pesticide
 - steel can burnt and its slag landfilled
 - steel can landfilled directly
- Potential criteria
 - recovery costs (economical today)
 - resource concentration

 (similar to concentration in currently exploited mines)

Thank you very much for your attention!

contact:

frischknecht@treeze.ch

www.treeze.ch

ecological scarcity method 2013

www.treeze.ch/projects/methodology-development/life-

cycle-impact-assessment/ecological-scarcity-method-2013/

Calculation of environmental impact of resource use

 $EIR = R_{ex} \times ef_R - R_{rec} \times ef_R = R_{diss} \times ef_R + R_{landf} \times ef_R$

- EIR: environmental impact of the resource
- R_{ex}: amount of resource extracted
- R_{rec}: amount of resource recycled
- R_{diss}: amount of resource dissipated to nature (emitted to air, water, soil)
- R_{landf}: amount of resource landfilled
- ef_R: eco-factor of the resource ("resource depletion" only, not including environmental impacts caused during mining etc).